skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Tianda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wearable IoT devices rely on batteries, which pose challenges for long-term sustainable health monitoring due to the need for recharging or replacement. Batteryless sensing approaches, which harvest energy from the environment, offer an appealing alternative. However, given the discontinuous supply of harvested energy, it is unclear how to leverage sparse, asynchronous data from batteryless sensors for machine learning (ML) tasks such as human activity recognition (HAR). To this end, we present and profile a prototype of a system to simulate data acquisition from a set of kinetic energy harvesting devices. Our results demonstrate that there is a need to jointly optimize (1) when sensors should spend energy to communicate data, and (2) the training of the ML model that will receive the data. 
    more » « less